Blog

What is the Optimal Operative Approach for DTC RECOMMENDATION 15 from the ATA 2025 Guidelines

  • When resection is performed for patients with thyroid cancer ≤ 2 cm without gross extra-thyroidal extension (cT1) and without metastases (cN0M0):
    • The initial surgical procedure should be a thyroid lobectomy:
      • Unless there are bilateral cancers or other indications to remove the contralateral lobe:
        • Strong recommendation, Moderate certainty evidence
  • For patients with low risk, unilateral thyroid cancer > 2 and ≤ 4 cm (cT2N0M0):
    • Thyroid lobectomy may be the preferred initial surgical treatment due to significantly lower risk and side effects:
      • However, the patient and treatment team may adopt total thyroidectomy to enable RAI administration and / or enhance follow-up based on disease features, suspicious contralateral nodularity, and / or patient preferences
    • When thyroid lobectomy is offered as initial treatment, counsel the patient about the possibility of conversion to total thyroidectomy or need for subsequent completion thyroidectomy if higher-risk factors emerge intraoperatively or postoper-
      atively:
      • Conditional recommendation, Low-moderate
        certainty evidence
  • For patients with thyroid cancer > 4 cm (cT3a), cancer of any size with gross extra-thyroidal extension (cT3b or cT4), or clinically apparent metastatic disease to lymph nodes (cN1) or distant sites (cM1):
    • The initial surgical procedure should include a total thyroidectomy with gross removal of all primary tumor and node dissection unless there are contraindications to this procedure
      • Strong recommendation, Moderate
        certainty evidence

RTOG-0920 (NRG-RTOG 0920)

  • Who was studied?
    • Population: 
      • Completely resected, intermediate-risk HNSCC of:
        • Oral cavity, oropharynx, or larynx:
          • Hypopharynx excluded
      • Intermediate-risk factors included any of: 
        • Pernineural invasion (PNI)
        • Lymphovascular ivasion (LVI)
        • ≥ 2 lymph nodes (LNs) (all < 6 cm) or one LN > 3 cm (no extranodal extension (ENE))
        • Close margin(s) < 5 mm or focally positive then re-resected negative
        • pT3 to pT4a primary, or T2 oral cavity with DOI > 5 mm ozarkscancerresearch.org
      • Key baseline notes: 
        • Majority HPV-negative (~ 80%)
        • Oral cavity ~ 64%
        • EGFR high expression in ~ 85%(assayed for stratification, not a requirement) NRG Oncology+1
    • Study design and treatment:
      • Randomization (1:1): 
        • PORT alone vs PORT + cetuximab
      • PORT: 
      • Cetuximab regimen: 
        • 400 mg/m² loading, then 250 mg/m² weekly x 6 during RT + 4 weekly doses post-RT (total 11) ozarkscancerresearch.org
      • Primary endpoint: 
        • Overall survival (OS) in all randomized / eligible
          • Pre-specified plan to test in HPV-negative subgroup
      • Secondary endpoints: 
        • Disease-free survival (DFS), toxicity, others PubMed
    • Results (median follow-up ~ 7.2 years):
      • Primary endpoint (OS): Negative:
        • OS HR 0.81; one-sided p=0.075 (did not meet significance)
        • 5-yr OS: 
      • Secondary endpoint (DFS): Positive
        • DFS HR 0.75; one-sided p=0.017
        • 5-yr DFS: 
          • 71.7% (PORT+cetuximab) vs 63.6% (PORT)
      • Toxicity:
        • Acute grade 3 to 4: 
          • 70.3% (PORT+cetuximab) vs 39.7% (PORT); p<0.0001:
        • Late grade 3 to 4: 
          • 33.2% vs 29.0%p=0.31 (no significant increase)
        • No grade-5 events NRG Oncology
      • Quality of life: 
        • A dedicated RTOG-0920 QoL analysis was presented at ASCO 2025:
          • Aligns with the toxicity profile (no long-term penalty reported in the abstract listing). ASC Publications+1
  • Interpretation (how to use this):
    • For HPV-negative, intermediate-risk patients who are not ideal candidates for high-dose cisplatin (remember cisplatin is reserved for high-risk ENE+ / positive-margin per RTOG 9501/EORTC 22931 era):
      • Adding cetuximab to PORT is a reasonable option to improve DFS without increasing late toxicity:
        • With trade-off of substantially higher acute toxicity
        • OS was not improved PubMed+1
        • HPV-positive:
          • No signal of benefit:
            • Do not extrapolate a DFS advantage here. PubMed
    • Sites: 
      • Data are particularly representative for oral cavity primaries (largest stratum) Red Journal
  • Practical selection checklist (tumor board quick hits):
    • Use PORT + cetuximab consideration when ALL are true:
      • HPV-negative HNSCC (oral cavity / oropharynx / larynx)
      • Intermediate-risk features as per protocol list above
      • No ENE or positive margins:
        • Those are high-risk → cisplatin-based CRT
      • Patient not a good candidate for cisplatin (comorbidities, renal / hearing issues)
      • Accepts higher acute toxicity risk and closer supportive care during RT ozarkscancerresearch.org+2PubMed+2
  • Key trial specs (at a glance):
    • NCT00956007; Opened Nov 2009, closed Mar 2018n=577 eligibleNRG Oncology+1
    • IMRT mandatory; p16 testing required for oropharynx; EGFR IHC collected (stratification/analysis). ozarkscancerresearch.org
  • Citation anchors:
    • Machtay M, et al. JCO 2025;43(12):1474–1487. Epub Jan 22, 2025. (Primary publication.) PubMed
    • NRG Oncology press summary with HRs, 5-yr estimates, and toxicity breakdown. NRG Oncology
    • Protocol (2016) schema/eligibility for exact intermediate-risk feature definitions and cetuximab dosing. ozarkscancerresearch.org
    • Additional baseline composition (oral cavity %, EGFR high) from earlier abstract. Red Journal

What did the Meta-Analysis of Chemotherapy in Head and Neck Cancer (MACH-NC) Actually Showed?

  • Takeaway: 
    • Concomitant chemotherapy + radiation therapy (RT):
      • Yields a statistically significant OS benefit vs RT alone:
        • HR ~ 0.83; ~ 6.5% 5-yr OS gain:
          • Driven by improved locoregional control
      • Induction alone or adjuvant alone did not improve OS
  • Use: 
    • This underpins cisplatin-CRT as the default curative standard
  • Refs: 
    • Lacas et al., MACH-NC (Radiother Oncol 2021; PMC)
  • What it is individual-patient data meta-analysis updating the MACH-NC database:
    • To 107 RCTs / 19,805 patients:
      • Accrued 1965 to 2012
    • Updated median follow-up:
      • 6.6 years
    • Endpoints:
      • OS, EFS, 120-day mortality, loco-regional failure (LRF), distant failure (DF), cancer vs non-cancer deaths Groningen Research Portal+1
    • Results by timing of chemotherapy:
      • Concomitant chemoradiotherapy (CRT) vs loco-regional therapy alone:
        • Overall survival: 
          • HR 0.83 (95% CI 0.79–0.86):
            • Absolute OS gain + 6.5% at 5 yr and + 3.6% at 10 yr (≈ NNT ~ 15 at 5 yr)
        • EFS:
          • HR 0.80 with + 5.8% at 5 yr
        • No increase in 120-day mortality:
        • Patterns of failure: 
          • Marked LRF reduction (sub-HR 0.71)
          • No DF effect (HR 1.04)
          • Survival benefit driven by lower cancer mortality (HR 0.79; − 9.8% at 5 yr):
        • Regimen effects: 
          • Greatest effect for platinum-containing polychemotherapy (EFS HR 0.74)
          • Smallest for non-platinum monochemotherapy (HR 0.86)
          • Benefit consistent across eras and RT modalities Groningen Research Portal
    • Induction chemotherapy (before RT / CRT):
      • OS and EFS: 
        • No significant benefit:
          • OS HR 0.96
          • EFS HR 0.96
        • DF decreases (HR 0.76):
          • But no LRF improvement (sub-HR 1.07)
        • Benefit attenuates with worse performance status Groningen Research Portal
    • Adjuvant chemotherapy (after loco-regional therapy):
      • OS and EFS: 
        • No benefit:
          • OS HR 1.02
          • EFS HR 0.98
      • Early mortality: 
        • Higher 120-day mortality (HR 1.89, p=0.0003)
        • Some reduction in LRF (sub-HR 0.84) and DF(HR 0.77) without survival gain Groningen Research Portal
    • Direct head-to-head concomitant vs induction (same drugs):
      • Across eight comparisons (n=1,214), concomitant is superior
        • OS HR 0.84 (≈ + 6.2% absolute OS at 5 yr)
        • EFS HR 0.85
        • LRF HR 0.86
      • Indirect comparisons concur (interaction p<0.0001) Groningen Research Portal
    • Subgroups and modifiers:
      • Age: 
      • Performance status: 
      • HPV / smoking: 
    • Practical takeaways:
      • For curative, non-metastatic HNSCC:
        • The only timing with proven OS benefit is concomitant chemo with RT
        • Expect ~ 6% to 7% absolute 5-yr OS gain:
      • Induction doesn’t improve OS vs loco-regional therapy alone (despite fewer distant mets)
      • Adjuvant chemo doesn’t improve OS and raises early mortality risk Groningen Research Portal+1
      • Within concomitant therapy:
        • Platinum-containing regimens carry the strongest signal:
  • Limitations the paper notes:
    • Trials span 1965 to 2012:
      • Staging, RT techniques, supportive care evolved
      • Still, no interaction by accrual period and sensitivity analyses were consistent
      • HPV data were largely unavailable. Groningen Research Portal
  • Citation (free full text): 
    • Lacas B, Carmel A, Landais C, et al. MACH-NC update—107 RCTs, 19,805 pts. Radiother Oncol. 2021;156:281-293. PMC8386522. Key effect sizes and table are in the PDF’s Table 1 and text (OS/EFS/120-day mortality/LRF/DF). 

What to Monitor During Chemoradiation CRT with Cisplatin for Head and Neck Cancer?

  • What to monitor (and when):
    • Before starting (≤ 7 days prior):
      • BMP / eGFR + electrolytes: 
        • Cr, BUN, Mg, K, Ca, Na, PO₄
      • Urinalysis if concern for renal injury
        • Why: 
          • Baseline renal reserve; cisplatin causes salt wasting (especially Mg) and AKI eviQ
      • CBC with differential:
      • Audiology (baseline audiogram):
      • Medication review and vitals / weight.:
        • Hold / avoid nephrotoxins:
          • NSAIDs, IV contrast, aminoglycosides
        • Assess fluid status eviQ
      • Antiemetic plan (cisplatin = high emetic risk):
    • Each cisplatin day (same day or within 24 to 48 hour before dose):
      • BMP / eGFR + Mg / K / Ca / Na / PO₄ and CBC
        • Act: 
          • Replete Mg (often 10 mmol MgSO₄ pre-hydration) and correct K / Ca before dosing
          • If eGFR ↓ or SCr ↑:
            • Evaluate per KDIGO, hydrate, and hold / modify eviQ
      • Hydration status and urine output:
        • Act: 
          • Use isotonic saline pre / post hydration:
            • Typical total 2.5 to 3.0 L around infusion
          • Routine mannitol not required:
            • Consider only for very high-dose eviQ
      • Symptom screen: 
        • Tinnitus, hearing change, paresthesias, nausea / vomiting, cramps (hypo-Mg), mucositis, dysphagia
        • Act:
    • Weekly during RT (even if cisplatin is q3-weekly):
      • BMP / eGFR + Mg / K / Ca (at least weekly), CBC weekly, weight, I/Os
        • Why:
          • Catch AKI and hypomagnesemia early
          • Track cytopenias and dehydration eviQ+1
      • Audiology: 
        • Repeat before each cycle (q3-weekly) or sooner if symptoms; for weekly cisplatin, obtain symptom-triggered or mid-course checks per local protocol American Academy of Audiology+1
  • What to do with common issues?
    • Rising creatinine / suspected AKI:
      • Trigger: 
        • ≥ 0.3 mg/dL increase or ≥ 1.5 × baseline (KDIGO stage 1+):
          • Hold cisplatin, hydrate (NS), replete Mg / K, stop nephrotoxins, reassess in 24 to 72 hours
      • Escalate care by stage Merck Manuals+1
    • Hypomagnesemia (very common):
      • Prevention / correction:
        • Include MgSO₄ in pre-hydration (e.g., 10 mmol in 1 L NS) and replete as needed:
          • Mg protects against cisplatin nephrotoxicity eviQ+1
    • Emesis despite prophylaxis
    • Ototoxicity symptoms (tinnitus, high-frequency loss):
      • Action: 
  • Hydration—practical template (adjust per institution):
    • Pre-hydration: 
      • 1 L NS over ~ 60 min with 10 mmol MgSO₄
    • Cisplatin infusion: 
      • 1 L NS over ~ 60 min (institutional)
    • Post-hydration: 
      • 1 L NS over ~ 60 min:
        • Encourage oral fluids (≥ 500 mL if tolerated)
    • Mannitol / diuretics:
      • Not routine; consider case-by-case (e.g., very high-dose)  eviQ
  • One-look table (what/why/act);
    • BMP / eGFR + Mg / K / Ca / Na / PO₄ (baseline and weekly):
      • Nephrotoxicity / salt wasting → hydrate, replete Mg / K, hold if AKI eviQ
    • CBC weekly: 
      • Myelosuppression → delay / modify if grade ≥ 3, treat per protocol DailyMed
    • Audiogram baseline ± before each cycle / PRN: 
    • Antiemetics each dose: 
  • Bottom line: 
    • Weekly labs (BMP / eGFR, Mg / K / Ca) + CBC
    • Disciplined hydration with Mg supplementation
    • Symptom-triggered audiology are the pillars that prevent missed AKIhypomagnesemiacytopenias, and ototoxicity during CRT with cisplatin

Complement Cascade

  • Complement System:
    • The complement cascade is a system of immune proteins:
      • That activates in a cascade-like fashion:
        • To fight infection and promote tissue repair:
          • But also contributes to inflammation and disease when overactivated
    • It works via three pathways (classic, lectin, alternative):
      • That converge to create inflammatory fragments called:
        • Anaphylatoxins and form a membrane attack complex (MAC) that can kill pathogens
    • Beyond infection:
      • Complement plays roles in clearing cellular debris, facilitating tissue regeneration, and regulating neuronal function:
        • But inappropriate activation can cause:
          • Chronic pain, autoimmune disease, and organ damage
    • Pathways and Triggers:
      • Each pathway initiates the cascade through different triggers but ultimately leads to the same outcomes: 
        • Classical Pathway: 
          • Activated by the binding of antibodies (like IgG and IgM) to antigens:
            • On the surface of a pathogen
        • Lectin Pathway: 
          • Initiated when mannose-binding lectin (MBL):
            • Binds to carbohydrate structures on bacterial cell walls 
        • Alternative Pathway: 
          • Triggered by the direct binding of complement components to foreign surfaces, such as pathogens, without the need for antibodies 
      • Classical pathway (antibody-dependent):
        • Trigger: 
          • C1q, a component of the C1 protein complex:
            • Binds to an antibody-antigen complex:
              • On a pathogen surface
            • The C1 complex is composed of:
              • C1q, C1r, and C1s
        • Cascade:
          • C1r and C1s are activated:
            • Which then cleave complement proteins C4 and C2
            • The larger fragments, C4b and C2b (also called C2a):
              • Bind together to form the classical pathway’s C3 convertase (C4b2b) 
        • Antigen – antibody complexes:
          • Best: 
            • IgM:
              • Then IgG1 / IgG3
        • Early components unique to this pathway: 
          • C1 (C1q, C1r, C1s)C2C4
        • C1 protein complex:
          • Needs Ca²⁺:
            • To stay assembled
      • Lectin pathway (antibody-independent; same cascade as classical after C4):
        • Trigger: 
          • The pattern recognition molecule:
            • Mannose-binding lectin (MBL) or ficolins:
              • Bind to specific carbohydrate patterns (like mannose) on the surface of pathogens
        • Cascade:
          • This binding activates MBL-associated serine proteases (MASPs):
            • Which are functionally similar to C1r and C1s
          • The MASPs cleave C4 and C2:
            • Forming the same C3 convertase (C4b2b) used by the classical pathway 
        • Mannose-binding lectin (MBL) or ficolins binding microbial sugars:
          • Enzymes: 
            • MASP-1 / MASP-2 cleave C4 and C2:
              • Merges with classic pathway a:
                • C3 convertase (C4b2a)
      • Alternative pathway (antibody-independent; tickover on surfaces):
        • Trigger: 
          • This pathway is always active at a low level through a “tickover” mechanism:
            • Where C3 is spontaneously hydrolyzed
          • It is further activated when C3b, a fragment of C3:
            • Binds directly to the surface of a pathogen or foreign material
        • Cascade:
          • Factor B binds to the surface-bound C3b and is then cleaved by Factor D to form C3bBb:
            • The alternative pathway’s C3 convertase
          • The protein properdin stabilizes this complex:
            • Amplifying the cascade
          • This pathway also acts as an amplification loop for the classical and lectin pathways
        • Spontaneous C3 hydrolysis on microbial / endotoxin surfaces:
          • Amplified by Factor B, Factor D, Properdin (P)
          • Note: 
            • Mg²⁺ is required for Factor B binding to C3b
            • Properdin stabilizes the convertase
        • Common note: 
          • C3:
            • Common to and is the convergence point for the three pathways
      • The final, common pathway:
        • All three initiation pathways converge to form a C3 convertase:
          • Which ultimately leads to the creation of the:
            • Membrane attack complex (MAC) 
        • C3 cleavage:
          • A C3 convertase cleaves C3 into two pieces:
            • C3a:
              • A small fragment that acts as a potent:
                • Anaphylatoxin, triggering inflammation
            • C3b:
              • A larger fragment that acts as an opsonin, or “tag,” marking the pathogen for destruction
              • It also attaches to the C3 convertase to create a C5 convertase
        • C5 cleavage:
          • The C5 convertase cleaves C5 into C5a (a potent anaphylatoxin and chemoattractant) and C5b
        • Membrane Attack Complex (MAC):
          • The C5b fragment recruits and assembles the remaining complement proteins (C6, C7, C8, and multiple C9 molecules):
            • To form a cylindrical pore in the pathogen’s membrane:
              • This pore disrupts the cell’s osmotic balance:
                • Causing it to lyse and die
      • C3 / C5 Convertases (know these cold):
        • Classical / Lectin pathway:
          • C3 convertase: 
            • C4b2a
          • C5 convertase: 
            • C4b2a3b
        • Alternative pathway:
          • C3 convertase: 
            • C3bBb:
              • Stabilized by Properdin / P
          • C5 convertase: 
            • C3bBb3b
        • Effector Functions (the “what does each piece do?”):
          • Anaphylatoxins: 
            • C3a, C4a, C5a:
              • ↑ vascular permeability
              • Vasodilation
              • Bronchoconstriction
              • Mast cell / basophil degranulation
            • Potency: 
              • C5a > C3a >> C4a (C4a is weak)
          • Chemotaxis (especially neutrophils): 
            • C5a is the major chemoattractant:
              • C3a contributes mainly as anaphylatoxin
            • C5a drives:
              • Leukocyte recruitment
              • Adhesion up-regulation
              • Oxidative burst
          • Opsonization: 
            • C3b (and iC3b), C4b
            • Coat pathogens (marks them for destruction):
              • CR1 / CR3 on phagocytes bind → enhanced phagocytosis
          • Membrane Attack Complex (MAC): 
            • C5b to C9
            • C5b:
              • Nucleates assembly with C6, C7, C8, C9 (polymerizes) → pore → osmotic lysis (classically Neisseria)
        • Ion Requirements (exam-friendly correction):
          • Classical and Lectin Pathway: 
            • Ca²⁺ required for C1qrs (classical) and MBL – MASP (lectin) complexes:
              • Mg²⁺ also involved downstream
          • Alternative pathway: 
            • Mg²⁺ essential for Factor B – C3b interaction and convertase formation:
              • So: not “Mg for both pathways”:
                • Only – Classical / Lectin need Ca²⁺
                • Alternative needs Mg²⁺ (and Properdin)
        • Regulation (why we don’t self-destruct):
          • C1 inhibitor (C1-INH): 
            • Blocks C1r / C1s and MASPs 1/2 (MASP-1 / MASP-2 cleave C4 and C2):
              • Turns off classic / lectin pathways early
          • Factor H and Factor I: 
            • Inactivate C3b (→ iC3b) on host cells:
              • Factor H prefers sialic acid – rich self surfaces
          • DAF / CD55: 
            • Disrupts C3 / C5 convertases on host cells
          • CD59 (Protectin): 
            • Blocks C9 polymerization:
              • Prevents MAC on self cells
          • Clinical Correlates (high-yield):
            • C1-INH deficiency → Hereditary angioedema:
              • Bradykinin-mediated edema:
                • ACE inhibitors worsen
              • Treat with C1-INH concentratebradykinin pathway blockers
            • C2 deficiency (most common classic pathway deficiency):
              • SLE-like disease, recurrent sinopulmonary infections
            • C3 deficiency:
              • Recurrent severe pyogenic infections:
                • Especially encapsulated bacteria; immune complex disease.
            • Terminal complement (C5 to C9) deficiency:
              • Recurrent Neisseria (meningitidis, gonorrhoeae)
            • DAF / CD55 or CD59 deficiency (e.g., PNH via PIGA mutation):
              • Intravascular hemolysishemoglobinuriathrombosis
              • Treat with C5 inhibitors:
                • Eculizumab / ravulizumab
            • Factor H / I abnormalities:
              • Atypical HUS, C3 glomerulopathy
          • Laboratory Assessment:
            • CH50:
              • Total classic pathway function:
                • Low in classic component defects or terminal pathway defects
            • AH50:
              • Total alternative pathway function
            • Heat-labile:
              • Complement activity falls if serum is mishandled / warmed
        • Quick “Apply It” Pearls:
          • Suspected meningococcemia with recurrence:
            • Check terminal complement (C5 to C9)
          • Recurrent pyogenic infections with low C3:
            • Evaluate classic / alternative convertase regulation
          • Episodic angioedema without urticaria:
            • Think C1-INH deficiency
          • Autoimmunity in a young patient + low early classic components (C1q/C2/C4) → screen for complement deficiencies
        • One-Page Memory Map:
          • Triggers:
            • Classic pathway: 
              • IgM / IgG immune complexes → C1qrs (Ca²⁺)
            • Lectin pathway: 
              • MBL / ficolin (MASPs) → C4, C2
            • Alternative pathway: 
              • C3 tackover + B, D, Properdin (Mg²⁺)
            • Convertases:
              • Classic / Lectin: 
                • C4b2a (C3), C4b2a3b (C5)
              • Alternative:
                • C3bBb (C3), C3bBb3b (C5)
            • Effectors:
              • Opsonins: 
                • C3b/iC3b (± C4b)
              • Anaphylatoxins: 
                • C5a > C3a >> C4a
              • Chemotaxis: 
                • C5a
              • MAC: C5b to C9
            • Regulators: 
              • C1-INH, Factor H / I, DAF (CD55), CD59
            • Deficiencies (buzzwords): 
              • C1-INH—HAE
              • C2—SLE-like
              • C3—pyogenic infections
              • C5–C9—Neisseria
              • DAF/CD59—PNH
              • Factor H/I—aHUS

Hepatic Acute-Phase Response (APR) in Trauma

  • Hepatic acute-phase response (APR) in trauma — what rises, what falls, and why it matters
    • What it is?
      • Within hours of significant injury:
        • IL-6 (with TNF-α / IL-1) shifts hepatocyte transcription toward acute-phase proteins (APPs):
          • Away from constitutive proteins
        • This fuels host defense:
          • Opsonization, complement, coagulation control, metal sequestration:
            • But distorts common labs
ProteinKinetics after traumaKey functionsClinical pearls
CRP↑ at 6–8 h; peak 48–72 h; t½ ≈ 19 hOpsonin; complements classical/lectin pathwaysTracks inflammatory burden; falls promptly as inflammation resolves (good trend marker).
Serum amyloid A (SAA)↑ within 4–6 h; very high amplitudeHDL remodeling; leukocyte recruitmentRises earlier/higher than CRP; very sensitive to tissue injury.
Fibrinogen↑ Day 2–3Coagulation substrate; fibrin matrix for repairDrives ESR; hyperfibrinogenemia promotes thrombosis risk.
Haptoglobin↑ 24–48 hBinds free Hb; antioxidantLow in hemolysis despite APR (consumption).
Hepcidin↑ within hours–24 hDecreases ferroportin → hypoferremiaMechanism of anemia of inflammation; ferritin may be high despite low iron.
Ferritin↑ 24–48 hIron storage/sequestrationHigh ferritin doesn’t mean iron repletion in APR.
Complement (C3, C4), MBL↑ 24–72 hOpsonization, pathogen lysisLow levels suggest consumption or hepatic failure.
α1-antitrypsin↑ 24–48 hSerine protease inhibition; tissue protectionDeficiency predisposes to unchecked proteolysis.
α1-acid glycoprotein (orosomucoid)↑ 24–48 hModulates immune response; drug bindingIncreases binding of basic drugs → lower free fraction.
Ceruloplasmin↑ 24–48 hCopper transport; oxidase activityOxidative defense; explains ↑ serum copper.
LPS-binding protein (LBP)↑ 12–24 hPresents LPS to CD14/TLR4Often elevated after trauma even without infection.
PAI-1↑ earlyInhibits fibrinolysisFavors microthrombosis; part of trauma-induced coagulopathy spectrum.
  • Procalcitonin (PCT):
    • Rises after major trauma but is not hepatic:
      • It’s produced systemically (notably in bacterial sepsis):
        • Helpful to distinguish sterile inflammation vs secondary infection (trajectory matters)
ProteinWhy it fallsPractical read
AlbuminReprioritized synthesis + capillary leakNot a nutrition marker in acute illness; low from redistribution/APR.
Prealbumin (Transthyretin)Short t½ (≈2 d) + reprioritizationFalls quickly; still APR-sensitive, not pure nutrition.
TransferrinIron sequestration programFalls early; contributes to hypoferremia.
Retinol-binding proteinReprioritizationDeclines with inflammation.
Antithrombin, Protein C/SConsumption + reduced synthesisPro-thrombotic tilt; watch in TIC/ICU patients.

How this maps onto trauma phases

  • Ebb (0 to 24 hours): 
    • Catecholamines / cortisol surge
    • TNF-α / IL-1 spark response
    • IL-6 begins hepatic switch
  • Flow – catabolic (days 1–7): 
    • CRP / SAA peak
    • Fibrinogen, complement, haptoglobin, hepcidin rise
    • Albumin / transferrin / prealbumin fall
    • Plasminogen Activator Inhibitor-1 (PAI-1):
      • Favors impaired fibrinolysis
  • Flow – anabolic (weeks): 
    • APR tapers
    • APPs normalize as repair predominates:
      • IL-10 / TGF-β tone higher

High-yield clinical pearls for surgery/ICU

  • CRP trend > single value:
    • Expect a 48 to 72 hour peak post-op:
      • A secondary rise suggests infection / collection
  • Hepcidin / ferritin pattern:
    • Low iron, low transferrin, high ferritin = anemia of inflammation:
      • Avoid reflex iron unless functional deficiency is proven
  • Coagulation:
    • ↑ fibrinogen and PAI-1 tilt toward thrombosis:
      • Combine with VTE prophylaxis early unless contraindicated
  • Drug dosing:
    • ↓ albumin raises free acidic drugs (e.g., phenytoin)
    • ↑ α-1-acid glycoprotein (AGP) / orosomucoid lowers free basic drugs (e.g., lidocaine)
    • Monitor levels / clinical effect
  • Nutrition metrics:
    • Albumin / prealbumin reflect inflammation, not intake:
      • Use calorie / protein delivery, nitrogen balance, indirect calorimetry or functional metrics instead

Selected references

  • Gabay C, Kushner I. Acute-phase proteins and systemic response to inflammation. N Engl J Med. 1999.
  • Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest. 2003.
  • Heinrich PC, et al. Interleukin-6-type cytokine signaling in hepatocytes. Biochem J. 2003.
  • Castell JV, Andus T. IL-6 and the acute-phase response. Biochem J. 1991/1992.
  • Ganz T, Nemeth E. Hepcidin and iron homeostasis in inflammation. Nat Rev Immunol. 2015.
  • Marnell L, Mold C, Du Clos TW. CRP and host defense. Immunol Res. 2005.
  • Meisner M. Procalcitonin—biochemistry and clinical diagnosis. 2010 (monograph).
Rodrigo Arrangoiz, MD (Oncology Surgeon)

Phases of the Metabolic Response to Trauma (and where Cytokines Fit)

  • Ebb phase:
    • First 6 to 24 hours to 48 hours:
      • “Shock, conserve”
    • Characterize by:
      • Hypometabolism
      • ↓O₂ consumption
      • Relative hypothermia
      • Neuroendocrine surge:
        • Catecholamines
        • Cortisol
        • Glucagon
      • The innate immune system is triggered:
        • Early TNF-α / IL-1 release:
          • Begins the inflammatory cascade / response PMC+1
  • Flow phase:
    • Catabolic sub-phase:
      • From days ~ 1 to 7:
        • “Hypermetabolism, mobilize”
    • Characterize by:
      • ↑O₂ consumption
      • Hyperglycemia
      • Insulin resistance
      • Proteolysis
      • TNF-α and IL-1 drive the early wave:
        • Rapidly followed by IL-6:
          • Acute-phase switch
        • IL-8:
          • Neutrophil recruitment (PMN chemotaxis)
          • Angiogenesis
        • Counter-regulators like IL-10:
          • To prevent runaway inflammation
      • Clinically corresponds to SIRS:
        • An anti-inflammatory counter-swing (CARS):
          • Follows and may blend into MARS in severe injury PubMed+1
  • Flow phase:
    • Anabolic / Recovery sub-phase:
      • Last weeks
    • Characterize by:
      • Gradual resolution of catabolism:
        • As inflammation recedes and tissue repair predominates
      • Cytokine tone shifts toward regulation and remodeling:
        • Persistent but lower IL-6:
  • Conceptual arc: 
    • TNF-α / IL-1 ignite the response → IL-6 flips on the acute-phase program → IL-8 pulls in neutrophils (and supports angiogenesis) → IL-10 tempers the fire
    • In severe trauma, this oscillates between SIRS → CARS (sometimes MARS), tracking clinical risk for infection or organ failurePubMed+1
  • Practical pearls you can teach on rounds:
    • CRP is an IL-6 barometer:
      • Rising CRP tracks the IL-6–driven hepatic response more than bacterial growth per se PubMed
    • Fever mechanics: 
      • IL-1 / TNF → PGE₂ in the hypothalamus:
        • Antipyretics reduce PGE₂ synthesis (COX inhibition) PMC
    • Atelectasis ≠ fever:
      • The long-taught notion that postoperative atelectasis causes fever isn’t supported by clinical data:
        • Early fevers are cytokine-mediated inflammation from surgical injury unless another source is found PubMed+1
  • Summary (link cytokines to phases):
    • Ebb (0 to 24 hours ): 
      • Catecholamines / cortisol ↑
      • TNF-α / IL-1 spark local and systemic inflammation PMC
    • Flow:
      • Catabolic (days 1 to 7): 
        • IL-6 → CRP / SAA
        • IL-8 → neutrophil recruitment / angiogenesis
        • Persistent SIRS risks early MOF
        • Rising IL-10 signals CARS BioMed Central+1
      • Flow:
        • Anabolic (weeks): 
          • Inflammation resolves
          • IL-10 / TGF-β tone dominates
          • Net protein balance turns positive with rehab / nutrition ScienceDirect
  • References:
    • Ebb/flow framework: Cuthbertson/Wilmore lineage and modern updates. PMC+1
    • TNF-α endothelial activation/adhesion: Parameswaran & Patial. PMC
    • IL-1 → PGE₂ fever (EP3 in POA): Blomqvist et al. PMC
    • IL-6 drives CRP/SAA (human hepatocytes): Castell et al.; Sack et al. PubMed+1
    • IL-8 neutrophil chemotaxis/angiogenesis: Cambier et al.; Koch et al. Nature+1
    • IL-10 anti-inflammatory: Schulte et al. PMC
    • SIRS → CARS model after trauma: Lenz et al.; Bone RC. PubMed+1
    • Atelectasis–fever myth: Mavros et al.; Stein et al. 
  • Leukotrienes:
    • Are a family of potent inflammatory lipid mediators:
      • Derived from arachidonic acid in white blood cells (leukocytes) and other immune cells
    • Produced rapidly in response to injury, infection, or allergens
    • Leukotrienes:
      • Act as local hormones:
        • That help regulate immune and inflammatory responses 
  • Biosynthesis pathway:
    • Leukotrienes are produced through the 5-lipoxygenase (5-LO) pathway 
    • An increase in intracellular calcium:
      • Activates the enzyme phospholipase A2 (cPLA2):
        • Which releases arachidonic acid (AA) from cell membrane phospholipids
    • AA is converted into an unstable epoxide intermediate:
      • Leukotriene A4 (LTA4):
        • Through a two-step process catalyzed by the 5-lipoxygenase enzyme.
      • LTA4 then branches into two main pathways:
        • Leading to the formation of two distinct classes of leukotrienes:
          • LTB4:
            • An LTA4 hydrolase enzyme converts LTA4 into leukotriene B4 (LTB4):
              • LTB4 is primarily involved in recruiting neutrophils and other leukocytes to inflammatory sites
          • Cysteinyl leukotrienes:
            • A separate enzyme, LTC4 synthase, conjugates LTA4 with glutathione to create:
              • Leukotriene C4 (LTC4):
                • LTC4 is subsequently metabolized into leukotriene D4 (LTD4) and leukotriene E4 (LTE4) by other enzymes
  • Functions of leukotrienes :
    • Leukotrienes exert their effects by binding to G-protein-coupled receptors (GPCRs) on the surface of target cells 
    • LTB4:
      • Acts as a potent chemoattractant:
        • Recruiting immune cells like neutrophils, eosinophils, and T-cells to inflamed tissues
        • It is also involved in the initial sensitization phase of allergic responses
    • Cysteinyl Leukotrienes (CysLTs): The CysLTs (LTC4, LTD4, and LTE4) cause:
      • Bronchoconstriction
      • Increased vascular permeability:
        • Leading to swelling (edema) and the leakage of plasma and immune cells into tissues
      • Mucus production:
        • Stimulating the release of excess mucus, particularly in the airways
  • Role in inflammatory diseases:
    • Because of their role in promoting inflammation:
      • Leukotrienes are implicated in a number of chronic inflammatory and allergic diseases
    • Asthma:
      • Overproduction of CysLTs is a major cause of the airway inflammation and bronchoconstriction seen in asthma, particularly exercise-induced asthma and aspirin-sensitive asthma
    • Allergic rhinitis:
      • CysLTs contribute to nasal congestion, mucus production, and other symptoms associated with hay fever
    • Rheumatoid arthritis and inflammatory bowel disease:
      • The pro-inflammatory effects of leukotrienes have been linked to these and other conditions
    • Cardiovascular disease:
      • Recent research suggests leukotrienes also play a role in cardiovascular diseases like atherosclerosis
  • Clinical applications:
    • The central role of leukotrienes in inflammation makes them a target for medications called leukotriene modifiers
    • 5-Lipoxygenase inhibitors:
      • Drugs like zileuton block the 5-LO enzyme, preventing the synthesis of all leukotrienes (LTB4 and CysLTs)
    • Leukotriene receptor antagonists (LTRAs):
      • Drugs like montelukast (Singulair) and zafirlukast (Accolate) block CysLTs from binding to their receptors
      • These are primarily used to manage asthma and allergic rhinitis. 
    • By interfering with the leukotriene pathway:
      • These drugs can help manage symptoms associated with inflammatory and allergic conditions
Rodrigo Arrangoiz, MD (Oncology Surgeon)

Management of Post-Operative Intermediate Risk Pathology in Head and Neck Sqaumous Cell Carcinoma (HNSCC)

  • Post-op intermediate-risk pathology:
    • Perineural Invasion (PNI)
    • Lymphovascular Invasion (LVI)
    • pT3
    • ENE-negative
    • Negative margins
  • Standard adjuvant plan: 
    • Postoperative radiation therapy (RT) alone (no concurrent cisplatin)
  • Why?:
    • Two landmark randomized trials established who benefits from adding cisplatin to adjuvant RT:
      • EORTC 22931 (Bernier, NEJM 2004):
      • RTOG 9501 (Cooper, NEJM 2004; 10-yr update 2012):
        • In the entire randomized population:
          • CRT did not significantly improve OS / DFS vs RT alone:
            • The KM benefit emerges only in the pre-specified subgroup with:
              • Positive margins and / or extranodal extension (ENE+):
                • Better LRC and DFS; OS trend
            • Outside that subgroup:
      • Comparative analysis of EORTC 22931 and RTOG 9501 (Bernier et al., Head & Neck 2005):
        • Concluded the most consistent benefit from adjuvant CRT is confined to:
          • ENE+ and / or positive margins
        • Features such as pT3PNILVI, or multiple nodes without ENE:
          • Did not reproducibly show survival benefit from adding cisplatin PubMed+1
  • Guideline take-home:
    • Contemporary guidelines reflect these data:
      • For intermediate-risk pathology (PNI / LVIpT3multiple nodes without ENEclear margins):
        • RT alone is recommended:;
          • Concurrent cisplatin is reserved for ENE+ and / or positive (or non-re-resectable “close”) margins JNCCN
    • Site-specific guidance (ASTRO 2024 HPV+ OPSCC):
      • Likewise recommends post-op RT alone for intermediate-risk categories:
  • Practical pearls:
    • Don’t over-treat intermediate-risk patients with cisplatin unless risk escalators exist (e.g., ENE+positive / non-re-resectable close margin):
      • This avoids unnecessary nephrotoxicity / ototoxicity / neurotoxicity without proven survival gain:
        • KM patterns from RTOG 9501:
          • Show separation only in ENE + / R + PubMed
    • RT planning: 
      • Typical adjuvant doses 60 to 66 Gy to the primary bed / high-risk nodal regions with elective coverage as indicated by subsite and pathologic mapping (per institutional / NCCN frameworks) JNCCN
    • Clinical trials:
      • If available, consider enrollment for intermediate-risk biology:
        • Biomarkers, de-intensification / intensification questions
        • Observational work underscores prognostic value of PNI / LVI but does not establish a chemotherapy benefit post-operatively PMC+1
  • Bottom line: 
    • For PNI / LVI / pT3 (ENE-negative, margins clear):
      • Post-operative RT alone is the guideline-concordant standard.
    • Reserve cisplatin-RT for:
      • ENE+ and / or positive / irremediably close margins:
        • Which is where randomized trials (and their Kaplan–Meier curves):
          • Show the benefit of adding chemotherapy

International Breast Cancer Study Group (IBCSG) 23-01 — Comparison of ALND versus No ALND in Cases of Micrometastases (≤ 2 mm)

  • Design:
    • Phase III, randomized, non-inferiority trial: 
      • Micrometastatic (≤ 2 mm) SLN, tumor ≤ 5 cm, clinically node-negative (cN0); no extracapsular extension
    • Randomized:
      • ALND vs no ALND
    • Primary endpoint: 
      • DFS:
      • NI margin HR 1.25
    • Population:
      • N = 934 randomized:
        • ALND 465
        • No-ALND 469
      • Median age ≈ 55
      • Most patietns had:
        • Breast-conserving surgery (~ 91%)
        • Tumors < 3 cm (~ 92%)
        • Received adjuvant systemic therapy (~ 96%)
        • Mastectomy (~ 9%)
    • 5-year results (primary publication, Lancet Oncology 2013):
      • 5-yr DFS: 
        • 87.8% (No-ALND) vs 84.4% (ALND):
          • HR 0.78 (95% CI 0.55–1.11):
            • Non-inferior (p for NI = 0.0042)
      • Axillary / regional recurrences (early report): 
        • Very low and similar:
          • Reported counts: 
            • 1 ALND vs 5 No-ALND over early follow-up -absolute numbers small
      • Toxicity: 
        • Grade 3 to 4 surgical morbidities (neuropathy / lymphedema) occurred almost exclusively in the ALND arm
      • Conclusion: 
        • In SLN micro metastases:
          • Omitting ALND did not compromise DFS and reduced morbidity
    • 10-year update (Lancet Oncology 2018):
      • Median follow-up 9.7 y (IQR 7.8–12.7).
      • 10-yr DFS: 
        • 76.8% (No-ALND) vs 74.9% (ALND):
          • HR 0.85 (95% CI 0.65–1.11); log-rank p = 0.24:
            • Non-inferiority maintained (p for NI = 0.0024)
      • Long-term morbidity: 
        • Lymphedema (any grade):
          • 4% No-ALND vs 13% ALND
        • Sensory neuropathy 
          • 13% No-ALND vs 19% ALND
        • Motor neuropathy:
          • 3% No-ALND vs 9% ALND
    • Interpretation: 
      • 10-year outcomes corroborate 5-year findings and align with Z0011:
        • ALND can be omitted when SLN tumor burden is minimal
    • Practice take-home:
      • In cT1 to cT2, cN0 patients with SLN micrometastases ≤ 2 mmskip ALND
        • Non-inferior DFS to 10 years and meaningfully less arm morbidity
      • Fits the broader de-escalation arc alongside ACOSOG Z0011 (1 to 2 macrometastases-positive SLNs in BCT + WBRT → omit ALND) and AMAROS (if nodal control needed, axillary RT ≈ ALND with less lymphedema)