Risk Assessment Models for Breast Cancer

  • The Gail model:
    • Which is based on:
      • Age
      • Race/ethnicity
      • Age at menarche
      • Age at first live birth
      • Number of prior breast biopsies
      • Personal history of atypical hyperplasia
      • Family history of breast cancer in first-degree relatives
    • The Gail model does not address and is not appropriate:
      • For patients with LCIS
  • The Tyrer-Cuzick model:
    • Incorporates:
      • Age
      • Nulliparity
      • Family history
      • LCIS
      • BMI
      • Age at menarche
      • Age at menopause
      • Hormone replacement therapy use
      • Prior breast biopsies
    • However, while the Tyrer-Cuzick model does incorporate personal history of atypical ductal hyperplasia and LCIS:
      • Data has emerged showing that this model:
        • Appears to overestimate risk
        • Has poor concordance among populations of women with high-risk breast lesions
    • This model does not accurately predict invasive breast cancer risk:
      • Should be avoided even it may be the most accurate in assessing risk secondary to family history:
        • Among women with LCIS
    • Breast cancer risk among women with LCIS:
      • Has been shown to be approximately 2% per year and modified by volume of LCIS
    • Are both Mendelian models that estimate breast cancer risk:
      • Based on the probability that the individual carries a mutation in a major breast cancer susceptibility gene:
        • Such as BRCA1 or BRCA2
    • The BOADICEA model incorporates 3rd-degree relatives
    • Whereas the BRCAPRO only incorporates 1st- and 2nd-degree relatives
    • Neither of these models incorporate nulliparity or LCIS into the calculation
  • References:
    • Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989;81(24):1879-1886.
    • Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med. 2004;23(7):1111-1130. [See comment in Stat Med. 2005;24:1610-1612; erratum appears in Stat Med. 2005;24:156].
    • Valero M, Zabor E, Park A, Gilbert E, Newman A, King TA, et al. The Tyrer-Cuzick Model inaccurately predicts invasive breast cancer risk in women with LCIS. Ann Surg Oncol. 2020;27(3):736-740.
    • Boughey JC, Hartmann LC, Anderson SS, Degnim AC, Vierkant RA, Reynolds CA, et al. Evaluation of the Tyrer-Cuzick (International Breast Cancer Intervention Study) model for breast cancer risk prediction in women with atypical hyperplasia. J Clin Oncol. 2010;28(22):3591-3596.
    • King TA, Pilewskie M, Muhsen S, Patil S, Mautner SK, Park A, et al. Lobular carcinoma in situ: a 29-year longitudinal experience evaluating clinicopathologic features and breast cancer risk. J Clin Oncol. 2015;33(33):3945-3952.
    • Berry DA, Parmigiani G, Sanchez J, Schildkraut J, Winer E. Probability of carrying a mutation of breast-ovarian cancer gene BRCA1 based on family history. J Natl Cancer Inst. 1997;89(3):227-238.
    • Antoniou AC, Pharoah PP, Smith P, Easton DF. The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer. 2004;91(8):1580-1590.

#Arrangoiz #CancerSurgeon #BreastSurgeon #SurgicalOncology #BreastCancer #CASO #CenterforAdvancedSurgicalOncology #PalmettoGeneralHospital

1 thought on “Risk Assessment Models for Breast Cancer”

  1. Gracias, Rodrigo por compartir.
    Justo en este mes de cáncer de mama.
    Quizás ya te avisaron que me revisaron por el quinto aniversario de remisión y encontraron todo bien.
    Siempre, estaré muy, muy agradecida


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s